An arbitrary-precision Decimal type for JavaScript.
See the README on GitHub for a quick-start introduction.
      In all examples below, var and semicolons are not shown, and if a commented-out
      value is in quotes it means toString has been called on the preceding expression.
    
      When the library is loaded, it defines a single function object,
      Decimal, the constructor of Decimal instances.
    
If necessary, multiple Decimal constructors can be created, each with their own independent configuration, e.g. precision and range, which applies to all Decimal instances created from it.
      
        A new Decimal constructor is created by calling the clone
        method of an already existing Decimal constructor.
      
    
Decimal(value) ⇒ Decimal
    value: number|string|Decimalvalue is an integer or float, including ±0, or
        is ±Infinity, or NaN.
      value is not limited, except by JavaScript's maximum
        array size and, in practice, the processing time required.
      value is defined in terms of a maximum exponent, see
        maxE, and a minimum exponent, see minE.
      value may be expressed in binary, hexadecimal
        or octal, if the appropriate prefix is included: 0x or 0X for
        hexadecimal, 0b or 0B for binary, and 0o or
        0O for octal.
      e or E defines a power-of-ten exponent
        for decimal values, and p or P defines a power-of-two exponent for
        non-decimal values, i.e. binary, hexadecimal or octal.
      Returns a new Decimal object instance.
Throws on an invalid value.
x = new Decimal(9)                       // '9'
y = new Decimal(x)                       // '9'
new Decimal('5032485723458348569331745.33434346346912144534543')
new Decimal('4.321e+4')                  // '43210'
new Decimal('-735.0918e-430')            // '-7.350918e-428'
new Decimal('5.6700000')                 // '5.67'
new Decimal(Infinity)                    // 'Infinity'
new Decimal(NaN)                         // 'NaN'
new Decimal('.5')                        // '0.5'
new Decimal('-0b10110100.1')             // '-180.5'
new Decimal('0xff.8')                    // '255.5'
new Decimal(0.046875)                    // '0.046875'
new Decimal('0.046875000000')            // '0.046875'
new Decimal('0.046_875_000_000')         // '0.046875'
new Decimal(4.6875e-2)                   // '0.046875'
new Decimal('468.75e-4')                 // '0.046875'
new Decimal('0b0.000011')                // '0.046875'
new Decimal('0o0.03')                    // '0.046875'
new Decimal('0x0.0c')                    // '0.046875'
new Decimal('0b1.1p-5')                  // '0.046875'
new Decimal('0o1.4p-5')                  // '0.046875'
new Decimal('0x1.8p-5')                  // '0.046875'
    The methods of a Decimal constructor.
.abs(x) ⇒ Decimalx: number|string|Decimal
See absoluteValue.
a = Decimal.abs(x) b = new Decimal(x).abs() a.equals(b) // true
.acos(x) ⇒ Decimalx: number|string|Decimal
See inverseCosine.
a = Decimal.acos(x) b = new Decimal(x).acos() a.equals(b) // true
.acosh(x) ⇒ Decimalx: number|string|Decimal
a = Decimal.acosh(x) b = new Decimal(x).acosh() a.equals(b) // true
.add(x, y) ⇒ Decimal
      x: number|string|Decimal
      y: number|string|Decimal
    
See plus.
a = Decimal.add(x, y) b = new Decimal(x).plus(y) a.equals(b) // true
.asin(x) ⇒ Decimalx: number|string|Decimal
See inverseSine.
a = Decimal.asin(x) b = new Decimal(x).asin() a.equals(b) // true
.asinh(x) ⇒ Decimalx: number|string|Decimal
a = Decimal.asinh(x) b = new Decimal(x).asinh() a.equals(b) // true
.atan(x) ⇒ Decimalx: number|string|Decimal
See inverseTangent.
a = Decimal.atan(x) b = new Decimal(x).atan() a.equals(b) // true
.atanh(x) ⇒ Decimalx: number|string|Decimal
a = Decimal.atanh(x) b = new Decimal(x).atanh() a.equals(b) // true
.atan2(y, x) ⇒ Decimal
      y: number|string|Decimal
      x: number|string|Decimal
    
      Returns a new Decimal whose value is the inverse tangent in radians of the quotient of
      y and x, rounded to precision
      significant digits using rounding mode rounding.
    
      The signs of y and x are used to determine the quadrant of the
      result.
    
      Domain: [-Infinity, Infinity]
      Range: [-pi, pi]
    
      See Pi and
      Math.atan2().
    
r = Decimal.atan2(y, x)
.cbrt(x) ⇒ Decimalx: number|string|Decimal
See cubeRoot.
a = Decimal.cbrt(x) b = new Decimal(x).cbrt() a.equals(b) // true
.ceil(x) ⇒ Decimalx: number|string|Decimal
See ceil.
a = Decimal.ceil(x) b = new Decimal(x).ceil() a.equals(b) // true
.clamp(min, max) ⇒ Decimal
      min: number|string|Decimal
      max: number|string|Decimal
    
See clampedTo.
Decimal.clamp(10.1, 0, 10) // '10'
.clone([object]) ⇒ Decimal constructor
    object: object
      Returns a new independent Decimal constructor with configuration settings as described by
      object (see set), or with the same
      settings as this Decimal constructor if object is omitted.
    
Decimal.set({ precision: 5 })
Decimal9 = Decimal.clone({ precision: 9 })
a = new Decimal(1)
b = new Decimal9(1)
a.div(3)                           // 0.33333
b.div(3)                           // 0.333333333
// Decimal9 = Decimal.clone({ precision: 9 }) is equivalent to:
Decimal9 = Decimal.clone()
Decimal9.set({ precision: 9 })
    
      If object has a 'defaults' property with value true
      then the new constructor will use the default configuration.
    
D1 = Decimal.clone({ defaults: true })
// Use the defaults except for precision
D2 = Decimal.clone({ defaults: true, precision: 50 })
    It is not inefficient in terms of memory usage to use multiple Decimal constructors as functions are shared between them.
.cos(x) ⇒ Decimalx: number|string|Decimal
See cosine.
a = Decimal.cos(x) b = new Decimal(x).cos() a.equals(b) // true
.cosh(x) ⇒ Decimalx: number|string|Decimal
See hyperbolicCosine.
a = Decimal.cosh(x) b = new Decimal(x).cosh() a.equals(b) // true
.div(x, y) ⇒ Decimal
      x: number|string|Decimal
      y: number|string|Decimal
    
See dividedBy.
a = Decimal.div(x, y) b = new Decimal(x).div(y) a.equals(b) // true
.exp(x) ⇒ Decimalx: number|string|Decimal
See naturalExponential.
a = Decimal.exp(x) b = new Decimal(x).exp() a.equals(b) // true
.floor(x) ⇒ Decimalx: number|string|Decimal
See floor.
a = Decimal.floor(x) b = new Decimal(x).floor() a.equals(b) // true
.hypot([x [, y, ...]]) ⇒ Decimal
    
      x: number|string|Decimal
      y: number|string|Decimal
    
      Returns a new Decimal whose value is the square root of the sum of the squares of the
      arguments, rounded to precision significant digits using
      rounding mode rounding.
    
r = Decimal.hypot(x, y)
.ln(x) ⇒ Decimalx: number|string|Decimal
See naturalLogarithm.
a = Decimal.ln(x) b = new Decimal(x).ln() a.equals(b) // true
.isDecimal(object) ⇒ boolean
    object: any
      Returns true if object is a Decimal instance (where Decimal is any
      Decimal constructor), or false if it is not.
    
a = new Decimal(1)
b = {}
a instanceof Decimal           // true
Decimal.isDecimal(a)           // true
Decimal.isDecimal(b)           // false
    .log(x [, base]) ⇒ Decimal
      x: number|string|Decimal
      base: number|string|Decimal
    
See logarithm.
      The default base is 10, which is not the same as JavaScript's
      Math.log(), which returns the natural logarithm (base e).
    
a = Decimal.log(x, y) b = new Decimal(x).log(y) a.equals(b) // true
.log2(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the base 2 logarithm of x,
      rounded to precision significant digits using rounding
      mode rounding.
    
r = Decimal.log2(x)
.log10(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the base 10 logarithm of x,
      rounded to precision significant digits using rounding
      mode rounding.
    
r = Decimal.log10(x)
.max(x [, y, ...]) ⇒ Decimal
    
      x: number|string|Decimal
      y: number|string|Decimal
    
Returns a new Decimal whose value is the maximum of the arguments.
r = Decimal.max(x, y, z)
.min(x [, y, ...]) ⇒ Decimal
    
      x: number|string|Decimal
      y: number|string|Decimal
    
Returns a new Decimal whose value is the minimum of the arguments.
r = Decimal.min(x, y, z)
.mod(x, y) ⇒ Decimal
      x: number|string|Decimal
      y: number|string|Decimal
    
See modulo.
a = Decimal.mod(x, y) b = new Decimal(x).mod(y) a.equals(b) // true
.mul(x, y) ⇒ Decimal
      x: number|string|Decimal
      y: number|string|Decimal
    
See times.
a = Decimal.mul(x, y) b = new Decimal(x).mul(y) a.equals(b) // true
.noConflict() ⇒ Decimal constructor
    Browsers only.
      Reverts the Decimal variable to the value it had before this library was loaded
      and returns a reference to the original Decimal constructor so it can be assigned to a
      variable with a different name.
    
<script> Decimal = 1 </script> <script src='/path/to/decimal.js'></script> <script> a = new Decimal(2) // '2' D = Decimal.noConflict() Decimal // 1 b = new D(3) // '3' </script>
.pow(base, exponent) ⇒ Decimal
      base: number|string|Decimal
      exponent: number|string|Decimal
    
See toPower.
a = Decimal.pow(x, y) b = new Decimal(x).pow(y) a.equals(b) // true
.random([dp]) ⇒ Decimal
    dp: number: integer, 0 to 1e+9 inclusive
      Returns a new Decimal with a pseudo-random value equal to or greater than 0 and
      less than 1.
    
      The return value will have dp decimal places (or less if trailing zeros are
      produced). If dp is omitted then the number of decimal places will
      default to the current precision setting.
    
      If the value of this Decimal constructor's
      crypto property is true, and the
      crypto object is available globally in the host environment, the random digits of
      the return value are generated by either crypto.getRandomValues (Web Cryptography
      API in modern browsers) or crypto.randomBytes (Node.js), otherwise, if the the
      value of the property is false the return value is generated by
      Math.random (fastest).
    
To make the crypto object available globally in Node.js use
global.crypto = require('crypto')
    
      If the value of this Decimal constructor's
      crypto property is set true and the
      crypto object and associated method are not available, an exception will be
      thrown.
    
      If one of the crypto methods is used, the value of the returned Decimal should be
      cryptographically-secure and statistically indistinguishable from a random value.
    
Decimal.set({ precision: 10 })
Decimal.random()                    // '0.4117936847'
Decimal.random(20)                  // '0.78193327636914089009'
    .round(x) ⇒ Decimalx: number|string|Decimal
See round.
a = Decimal.round(x) b = new Decimal(x).round() a.equals(b) // true
.set(object) ⇒ Decimal constructorobject: object
      Configures the 'global' settings for this particular Decimal constructor, i.e.
      the settings which apply to operations performed on the Decimal instances created by it.
    
Returns this Decimal constructor.
      The configuration object, object, can contain some or all of the properties
      described in detail at Properties and shown in the
      example below.
    
      The values of the configuration object properties are checked for validity and then stored as
      equivalently-named properties of this Decimal constructor.
    
      If object has a 'defaults' property with value true
      then any unspecified properties will be reset to their default values.
    
Throws on an invalid object or configuration property value.
// Defaults
Decimal.set({
    precision: 20,
    rounding: 4,
    toExpNeg: -7,
    toExpPos: 21,
    maxE: 9e15,
    minE: -9e15,
    modulo: 1,
    crypto: false
})
// Reset all properties to their default values
Decimal.set({ defaults: true })
// Set precision to 50 and all other properties to their default values
Decimal.set({ precision: 50, defaults: true })
    The properties of a Decimal constructor can also be set by direct assignment, but that will by-pass the validity checking that this method performs - this is not a problem if the user knows that the assignment is valid.
Decimal.precision = 40
.sign(x) ⇒ numberx: number|string|Decimal
| Returns | |
|---|---|
| 1 | if the value of xis non-zero and its sign is positive | 
| -1 | if the value of xis non-zero and its sign is negative | 
| 0 | if the value of xis positive zero | 
| -0 | if the value of xis negative zero | 
| NaN | if the value of xisNaN | 
r = Decimal.sign(x)
.sin(x) ⇒ Decimalx: number|string|Decimal
See sine.
a = Decimal.sin(x) b = new Decimal(x).sin() a.equals(b) // true
.sinh(x) ⇒ Decimalx: number|string|Decimal
See hyperbolicSine.
a = Decimal.sinh(x) b = new Decimal(x).sinh() a.equals(b) // true
.sqrt(x) ⇒ Decimalx: number|string|Decimal
See squareRoot.
a = Decimal.sqrt(x) b = new Decimal(x).sqrt() a.equals(b) // true
.sub(x, y) ⇒ Decimal
      x: number|string|Decimal
      y: number|string|Decimal
    
See minus.
a = Decimal.sub(x, y) b = new Decimal(x).sub(y) a.equals(b) // true
.sum(x [, y, ...]) ⇒ Decimal
      x: number|string|Decimal
      y: number|string|Decimal
    
      Returns a new Decimal whose value is the sum of the arguments,
      rounded to precision significant digits using
      rounding mode rounding.
      Only the result is rounded, not the intermediate summations.
    
x = 5 y = '16' z = new Decimal(-11) Decimal.sum(x, y, z) // '10'
.tan(x) ⇒ Decimalx: number|string|Decimal
See tangent.
a = Decimal.tan(x) b = new Decimal(x).tan() a.equals(b) // true
.tanh(x) ⇒ Decimalx: number|string|Decimal
See hyperbolicTangent.
a = Decimal.tanh(x) b = new Decimal(x).tanh() a.equals(b) // true
.trunc(x) ⇒ Decimalx: number|string|Decimal
See truncated.
a = Decimal.trunc(x) b = new Decimal(x).trunc() a.equals(b) // true
The properties of a Decimal constructor.
      The values of the configuration properties precision,
      rounding, minE,
      maxE, toExpNeg,
      toExpPos, modulo, and
      crypto are set using the
      set method.
    
      As simple object properties they can be set directly without using
      set, and it is fine to do so, but the values assigned
      will not then be checked for validity. For example:
    
Decimal.set({ precision: 0 })
// '[DecimalError] Invalid argument: precision: 0'
Decimal.precision = 0
// No error is thrown and the results of calculations are unreliable
    
      number: integer, 1 to 1e+9 inclusive
      Default value: 20
    
The maximum number of significant digits of the result of an operation.
      All functions which return a Decimal will round the return value to precision
      significant digits except Decimal,
      absoluteValue,
      ceil,
      clampedTo,
      floor,
      negated,
      round,
      toDecimalPlaces,
      toNearest and
      truncated.
    
      See Pi for the precision limit of the trigonometric methods.
    
Decimal.set({ precision: 5 })
Decimal.precision                  // 5
    
      number: integer, 0 to 8 inclusive
      Default value: 4 (ROUND_HALF_UP)
    
      The default rounding mode used when rounding the result of an operation to
      precision significant digits, and when rounding the
      return value of the round,
      toBinary,
      toDecimalPlaces,
      toExponential,
      toFixed,
      toHexadecimal,
      toNearest,
      toOctal,
      toPrecision and
      toSignificantDigits methods.
    
The rounding modes are available as enumerated properties of the constructor.
Decimal.set({ rounding: Decimal.ROUND_UP })
Decimal.set({ rounding: 0 })       // equivalent
Decimal.rounding                   // 0
    
      number: integer, -9e15 to 0 inclusive
      Default value: -9e15
    
The negative exponent limit, i.e. the exponent value below which underflow to zero occurs.
      If the Decimal to be returned by a calculation would have an exponent lower than
      minE then the value of that Decimal becomes zero.
    
      JavaScript numbers underflow to zero for exponents below -324.
    
Decimal.set({ minE: -500 })
Decimal.minE                       // -500
new Decimal('1e-500')              // '1e-500'
new Decimal('9.9e-501')            // '0'
Decimal.set({ minE: -3 })
new Decimal(0.001)                 // '0.001'       e is -3
new Decimal(0.0001)                // '0'          e is -4
    
      The smallest possible magnitude of a non-zero Decimal is 1e-9000000000000000
    
      number: integer, 0 to 9e15 inclusive
      Default value: 9e15
    
      The positive exponent limit, i.e. the exponent value above which overflow to
      Infinity occurs.
    
      If the Decimal to be returned by a calculation would have an exponent higher than
      maxE then the value of that Decimal becomes Infinity.
    
      JavaScript numbers overflow to Infinity for exponents above 308.
    
Decimal.set({ maxE: 500 })
Decimal.maxE                       // 500
new Decimal('9.999e500')           // '9.999e+500'
new Decimal('1e501')               // 'Infinity'
Decimal.set({ maxE: 4 })
new Decimal(99999)                 // '99999'      e is 4
new Decimal(100000)                // 'Infinity'
    
      The largest possible magnitude of a finite Decimal is 9.999...e+9000000000000000
    
      number: integer, -9e15 to 0 inclusive
      Default value: -7
    
      The negative exponent value at and below which toString
      returns exponential notation.
    
Decimal.set({ toExpNeg: -7 })
Decimal.toExpNeg                   // -7
new Decimal(0.00000123)            // '0.00000123'       e is -6
new Decimal(0.000000123)           // '1.23e-7'
// Always return exponential notation:
Decimal.set({ toExpNeg: 0 })
    
      JavaScript numbers use exponential notation for negative exponents of -7 and
      below.
    
      Regardless of the value of toExpNeg, the
      toFixed method will always return a value in normal
      notation and the toExponential method will always
      return a value in exponential form.
    
      number: integer, 0 to 9e15 inclusive
      Default value: 20
    
      The positive exponent value at and above which toString
      returns exponential notation.
    
Decimal.set({ toExpPos: 2 })
Decimal.toExpPos                   // 2
new Decimal(12.3)                  // '12.3'        e is 1
new Decimal(123)                   // '1.23e+2'
// Always return exponential notation:
Decimal.set({ toExpPos: 0 })
    
      JavaScript numbers use exponential notation for positive exponents of 20 and
      above.
    
      Regardless of the value of toExpPos, the
      toFixed method will always return a value in normal
      notation and the toExponential method will always
      return a value in exponential form.
    
      number: integer, 0 to 9 inclusive
      Default value: 1 (ROUND_DOWN)
    
The modulo mode used when calculating the modulus: a mod n.
      The quotient, q = a / n, is calculated according to the
      rounding mode that corresponds to the chosen
      modulo mode.
    
The remainder, r, is calculated as: r = a - n * q.
      The modes that are most commonly used for the modulus/remainder operation are shown in the
      following table. Although the other rounding modes can
      be used, they may not give useful results.
    
| Property | Value | Description | 
|---|---|---|
| ROUND_UP | 0 | The remainder is positive if the dividend is negative, else is negative | 
| ROUND_DOWN | 1 | The remainder has the same sign as the dividend. This uses truncating division and matches the behaviour of JavaScript's remainder operator %. | 
| ROUND_FLOOR | 3 | The remainder has the same sign as the divisor. (This matches Python's %operator) | 
| ROUND_HALF_EVEN | 6 | The IEEE 754 remainder function | 
| EUCLID | 9 | The remainder is always positive. Euclidian division: q = sign(x) * floor(a / abs(x)). | 
The rounding/modulo modes are available as enumerated properties of the Decimal constructor.
Decimal.set({ modulo: Decimal.EUCLID })
Decimal.set({ modulo: 9 })         // equivalent
Decimal.modulo                     // 9
    
      boolean: true/false
 Default value: false
    
The value that determines whether cryptographically-secure pseudo-random number generation is used.
See random.
// Node.js
global.crypto = require('crypto')
Decimal.crypto                     // false
Decimal.set({ crypto: true })
Decimal.crypto                     // true
    
      The library's enumerated rounding modes are stored as properties of the Decimal constructor.
      
They are not referenced internally by the library itself.
    
Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
| Property | Value | Description | 
|---|---|---|
| ROUND_UP | 0 | Rounds away from zero | 
| ROUND_DOWN | 1 | Rounds towards zero | 
| ROUND_CEIL | 2 | Rounds towards Infinity | 
| ROUND_FLOOR | 3 | Rounds towards -Infinity | 
| ROUND_HALF_UP | 4 | Rounds towards nearest neighbour. If equidistant, rounds away from zero | 
| ROUND_HALF_DOWN | 5 | Rounds towards nearest neighbour. If equidistant, rounds towards zero | 
| ROUND_HALF_EVEN | 6 | Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour | 
| ROUND_HALF_CEIL | 7 | Rounds towards nearest neighbour. If equidistant, rounds towards Infinity | 
| ROUND_HALF_FLOOR | 8 | Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity | 
| EUCLID | 9 | Not a rounding mode, see modulo | 
Decimal.set({ rounding: Decimal.ROUND_CEIL })
Decimal.set({ rounding: 2 })       // equivalent
Decimal.rounding                   // 2
    The methods inherited by a Decimal instance from its constructor's prototype object.
A Decimal instance is immutable in the sense that it is not changed by its methods.
Methods that return a Decimal can be chained:
x = new Decimal(2).times('999.999999999999999').dividedBy(4).ceil()
    Methods do not round their arguments before execution.
      The treatment of ±0, ±Infinity and NaN
      is consistent with how JavaScript treats these values.
    
Many method names have a shorter alias. (Internally, the library always uses the shorter method names.)
.abs() ⇒ DecimalReturns a new Decimal whose value is the absolute value, i.e. the magnitude, of the value of this Decimal.
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(-0.8) y = x.absoluteValue() // '0.8' z = y.abs() // '0.8'
.ceil() ⇒ Decimal
      Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in
      the direction of positive Infinity.
    
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(1.3) x.ceil() // '2' y = new Decimal(-1.8) y.ceil() // '-1'
.clamp(min, max) ⇒ Decimal
      min: number|string|Decimal
      max: number|string|Decimal
    
      Returns a new Decimal whose value is the value of this Decimal clamped to the range
      delineated by min and max.
    
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(5) min = new Decimal(100) max = new Decimal(Infinity) x.clampedTo(min, max) // '100' x.clamp(-10, -0.1) // '-0.1'
.cmp(x) ⇒ numberx: number|string|Decimal
| Returns | |
|---|---|
| 1 | if the value of this Decimal is greater than the value of x | 
| -1 | if the value of this Decimal is less than the value of x | 
| 0 | if this Decimal and xhave the same value | 
| NaN | if the value of either this Decimal or xisNaN | 
x = new Decimal(Infinity) y = new Decimal(5) x.comparedTo(y) // 1 x.comparedTo(x.minus(1)) // 0 y.cmp(NaN) // NaN
.cos() ⇒ Decimal
      Returns a new Decimal whose value is the cosine of the value in radians of this Decimal,
      rounded to precision significant digits using rounding
      mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [-1, 1]
    
See Pi for the precision limit of this method.
x = new Decimal(0.25) x.cosine() // '0.96891242171064478414' y = new Decimal(-0.25) y.cos() // '0.96891242171064478414'
.cbrt() ⇒ Decimal
      Returns a new Decimal whose value is the cube root of this Decimal, rounded to
      precision significant digits using rounding mode
      rounding.
    
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
x = new Decimal(125) x.cubeRoot() // '5' y = new Decimal(3) y.cbrt() // '1.4422495703074083823'
.dp() ⇒ numberReturns the number of decimal places, i.e. the number of digits after the decimal point, of the value of this Decimal.
x = new Decimal(1.234) x.decimalPlaces() // '3' y = new Decimal(987.654321) y.dp() // '6'
.div(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal divided by x,
      rounded to precision significant digits using rounding
      mode rounding.
    
x = new Decimal(355) y = new Decimal(113) x.dividedBy(y) // '3.14159292035398230088' x.div(5) // '71'
.divToInt(x) ⇒ Decimal
    x: number|string|Decimal
      Return a new Decimal whose value is the integer part of dividing this Decimal by
      x, rounded to precision significant digits
      using rounding mode rounding.
    
x = new Decimal(5) y = new Decimal(3) x.dividedToIntegerBy(y) // '1' x.divToInt(0.7) // '7'
.eq(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal equals the value of x,
      otherwise returns false.
 As with JavaScript, NaN does not
      equal NaN.
    
Note: This method uses the cmp method internally.
0 === 1e-324                     // true
x = new Decimal(0)
x.equals('1e-324')               // false
new Decimal(-0).eq(x)            // true  ( -0 === 0 )
y = new Decimal(NaN)
y.equals(NaN)                    // false
    .floor() ⇒ Decimal
      Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in
      the direction of negative Infinity.
    
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(1.8) x.floor() // '1' y = new Decimal(-1.3) y.floor() // '-2'
.gt(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal is greater than the value of
      x, otherwise returns false.
    
Note: This method uses the cmp method internally.
0.1 > (0.3 - 0.2) // true x = new Decimal(0.1) x.greaterThan(Decimal(0.3).minus(0.2)) // false new Decimal(0).gt(x) // false
.gte(x) ⇒ boolean
    x: number|string|Decimal
      Returns true if the value of this Decimal is greater than or equal to the value
      of x, otherwise returns false.
    
Note: This method uses the cmp method internally.
(0.3 - 0.2) >= 0.1 // false x = new Decimal(0.3).minus(0.2) x.greaterThanOrEqualTo(0.1) // true new Decimal(1).gte(x) // true
.cosh() ⇒ Decimal
      Returns a new Decimal whose value is the hyperbolic cosine of the value in radians of this
      Decimal, rounded to precision significant digits using
      rounding mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [1, Infinity]
    
See Pi for the precision limit of this method.
x = new Decimal(1) x.hyperbolicCosine() // '1.5430806348152437785' y = new Decimal(0.5) y.cosh() // '1.1276259652063807852'
.sinh() ⇒ Decimal
      Returns a new Decimal whose value is the hyperbolic sine of the value in radians of this
      Decimal, rounded to precision significant digits using
      rounding mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [-Infinity, Infinity]
    
See Pi for the precision limit of this method.
x = new Decimal(1) x.hyperbolicSine() // '1.1752011936438014569' y = new Decimal(0.5) y.sinh() // '0.52109530549374736162'
.tanh() ⇒ Decimal
      Returns a new Decimal whose value is the hyperbolic tangent of the value in radians of this
      Decimal, rounded to precision significant digits using
      rounding mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [-1, 1]
    
See Pi for the precision limit of this method.
x = new Decimal(1) x.hyperbolicTangent() // '0.76159415595576488812' y = new Decimal(0.5) y.tanh() // '0.4621171572600097585'
.acos() ⇒ Decimal
      Returns a new Decimal whose value is the inverse cosine in radians of the value of this
      Decimal, rounded to precision significant digits using
      rounding mode rounding.
    
      Domain: [-1, 1]
      Range: [0, pi]
    
See Pi for the precision limit of this method.
x = new Decimal(0) x.inverseCosine() // '1.5707963267948966192' y = new Decimal(0.5) y.acos() // '1.0471975511965977462'
.acosh() ⇒ Decimal
    
      Returns a new Decimal whose value is the inverse hyperbolic cosine in radians of the value of
      this Decimal, rounded to precision significant
      digits using rounding mode rounding.
    
      Domain: [1, Infinity]
      Range: [0, Infinity]
    
See Pi for the precision limit of this method.
x = new Decimal(5) x.inverseHyperbolicCosine() // '2.2924316695611776878' y = new Decimal(50) y.acosh() // '4.6050701709847571595'
.asinh() ⇒ Decimal
    
      Returns a new Decimal whose value is the inverse hyperbolic sine in radians of the value of
      this Decimal, rounded to precision significant digits
      using rounding mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [-Infinity, Infinity]
    
See Pi for the precision limit of this method.
x = new Decimal(5) x.inverseHyperbolicSine() // '2.3124383412727526203' y = new Decimal(50) y.asinh() // '4.6052701709914238266'
.atanh() ⇒ Decimal
    
      Returns a new Decimal whose value is the inverse hyperbolic tangent in radians of the value of
      this Decimal, rounded to precision significant
      digits using rounding mode rounding.
    
      Domain: [-1, 1]
      Range: [-Infinity, Infinity]
    
See Pi for the precision limit of this method.
x = new Decimal(0.5) x.inverseHyperbolicTangent() // '0.5493061443340548457' y = new Decimal(0.75) y.atanh() // '0.97295507452765665255'
.asin() ⇒ Decimal
      Returns a new Decimal whose value is the inverse sine in radians of the value of this Decimal,
      rounded to precision significant digits using rounding
      mode rounding.
    
      Domain: [-1, 1]
      Range: [-pi/2, pi/2]
    
See Pi for the precision limit of this method.
x = new Decimal(0.5) x.inverseSine() // '0.52359877559829887308' y = new Decimal(0.75) y.asin() // '0.84806207898148100805'
.atan() ⇒ Decimal
      Returns a new Decimal whose value is the inverse tangent in radians of the value of this
      Decimal, rounded to precision significant digits using
      rounding mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [-pi/2, pi/2]
    
See Pi for the precision limit of this method.
x = new Decimal(0.5) x.inverseTangent() // '0.46364760900080611621' y = new Decimal(0.75) y.atan() // '0.6435011087932843868'
.isFinite() ⇒ boolean
      Returns true if the value of this Decimal is a finite number, otherwise returns
      false.
      The only possible non-finite values of a Decimal are NaN, Infinity
      and -Infinity.
    
x = new Decimal(1) x.isFinite() // true y = new Decimal(Infinity) y.isFinite() // false
.isInt() ⇒ boolean
      Returns true if the value of this Decimal is a whole number, otherwise returns
      false.
    
x = new Decimal(1) x.isInteger() // true y = new Decimal(123.456) y.isInt() // false
.isNaN() ⇒ boolean
      Returns true if the value of this Decimal is NaN, otherwise returns
      false.
    
x = new Decimal(NaN)
x.isNaN()                                // true
y = new Decimal('Infinity')
y.isNaN()                                // false
    .isNeg() ⇒ boolean
      Returns true if the value of this Decimal is negative, otherwise returns
      false.
    
x = new Decimal(-0) x.isNegative() // true y = new Decimal(2) y.isNeg // false
Note that zero is signed.
new Decimal(0).valueOf()                 // '0'
new Decimal(0).isNegative()              // false
new Decimal(0).negated().valueOf()       // '-0'
new Decimal(0).negated().isNegative()    // true
new Decimal(-0).isNegative()             // true
    
     .isPos() ⇒ boolean
      Returns true if the value of this Decimal is positive, otherwise returns
      false.
    
x = new Decimal(0) x.isPositive() // true y = new Decimal(-2) y.isPos // false
.isZero() ⇒ boolean
      Returns true if the value of this Decimal is zero or minus zero, otherwise
      returns false.
    
x = new Decimal(-0) x.isZero() && x.isNeg() // true y = new Decimal(Infinity) y.isZero() // false
.lt(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal is less than the value of
      x, otherwise returns false.
    
Note: This method uses the cmp method internally.
(0.3 - 0.2) < 0.1 // true x = new Decimal(0.3).minus(0.2) x.lessThan(0.1) // false new Decimal(0).lt(x) // true
.lte(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal is less than or equal to the value of
      x, otherwise returns false.
    
Note: This method uses the cmp method internally.
0.1 <= (0.3 - 0.2) // false x = new Decimal(0.1) x.lessThanOrEqualTo(Decimal(0.3).minus(0.2)) // true new Decimal(-1).lte(x) // true
.log(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the base x logarithm of the value of this
      Decimal, rounded to precision significant digits using
      rounding mode rounding.
    
      If x is omitted, the base 10 logarithm of the value of this Decimal will be
      returned.
    
x = new Decimal(1000) x.logarithm() // '3' y = new Decimal(256) y.log(2) // '8'
      The return value will almost always be correctly rounded, i.e. rounded as if the result
      was first calculated to an infinite number of correct digits before rounding. If a result is
      incorrectly rounded the maximum error will be 1 ulp (unit in the last
      place).
    
Logarithms to base 2 or 10 will always be correctly rounded.
      See toPower for the circumstances in which this method may
      return an incorrectly rounded result, and see naturalLogarithm
      for the precision limit.
    
The performance of this method degrades exponentially with increasing digits.
.minus(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal minus x, rounded
      to precision significant digits using rounding mode
      rounding.
    
0.3 - 0.1 // 0.19999999999999998 x = new Decimal(0.3) x.minus(0.1) // '0.2'
.mod(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal modulo x,
      rounded to precision significant digits using rounding
      mode rounding.
    
      The value returned, and in particular its sign, is dependent on the value of the
      modulo property of this Decimal's constructor. If it is
      1 (default value), the result will have the same sign as this Decimal, and it
      will match that of Javascript's % operator (within the limits of double
      precision) and BigDecimal's remainder method.
    
      See modulo for a description of the other modulo modes.
    
1 % 0.9 // 0.09999999999999998 x = new Decimal(1) x.modulo(0.9) // '0.1' y = new Decimal(8) z = new Decimal(-3) Decimal.modulo = 1 y.mod(z) // '2' Decimal.modulo = 3 y.mod(z) // '-1'
.exp() ⇒ Decimal
      Returns a new Decimal whose value is the base e (Euler's number, the base of the
      natural logarithm) exponential of the value of this Decimal, rounded to
      precision significant digits using rounding mode
      rounding.
    
      The naturalLogarithm function is the inverse of this function.
    
x = new Decimal(1) x.naturalExponential() // '2.7182818284590452354' y = new Decimal(2) y.exp() // '7.3890560989306502272'
      The return value will be correctly rounded, i.e. rounded as if the result was first calculated
      to an infinite number of correct digits before rounding. (The mathematical result of the
      exponential function is non-terminating, unless its argument is 0).
    
The performance of this method degrades exponentially with increasing digits.
.ln() ⇒ Decimal
      Returns a new Decimal whose value is the natural logarithm of the value of this Decimal,
      rounded to precision significant digits using rounding
      mode rounding.
    
      The natural logarithm is the inverse of the naturalExponential
      function.
    
x = new Decimal(10)
x.naturalLogarithm()                     // '2.3026'
y = new Decimal('1.23e+30')
y.ln()                                   // '69.28'
    
      The return value will be correctly rounded, i.e. rounded as if the result was first calculated
      to an infinite number of correct digits before rounding. (The mathematical result of the
      natural logarithm function is non-terminating, unless its argument is 1).
    
      Internally, this method is dependent on a constant whose value is the natural logarithm of
      10. This LN10 variable in the source code currently has a precision
      of 1025 digits, meaning that this method can accurately calculate up to
      1000 digits.
    
      If more than 1000 digits is required then the precision of LN10
      will need to be increased to 25 digits more than is required - though, as the
      time-taken by this method increases exponentially with increasing digits, it is unlikely to be
      viable to calculate over 1000 digits anyway.
    
.neg() ⇒ Decimal
      Returns a new Decimal whose value is the value of this Decimal negated, i.e. multiplied by
      -1.
    
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(1.8) x.negated() // '-1.8' y = new Decimal(-1.3) y.neg() // '1.3'
.plus(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal plus x, rounded to
      precision significant digits using rounding mode
      rounding.
    
0.1 + 0.2 // 0.30000000000000004 x = new Decimal(0.1) y = x.plus(0.2) // '0.3' new Decimal(0.7).plus(x).plus(y) // '1.1'
.sd([include_zeros]) ⇒ numberReturns the number of significant digits of the value of this Decimal.
      If include_zeros is true or 1 then any trailing zeros
      of the integer part of a number are counted as significant digits, otherwise they are not.
    
x = new Decimal(1.234) x.precision() // '4' y = new Decimal(987000) y.sd() // '3' y.sd(true) // '6'
.round() ⇒ Decimal
      Returns a new Decimal whose value is the value of this Decimal rounded to a whole number using
      rounding mode rounding.
    
      To emulate Math.round, set rounding to
      7, i.e. ROUND_HALF_CEIL.
    
Decimal.set({ rounding: 4 })
x = 1234.5
x.round()                                // '1235'
Decimal.rounding = Decimal.ROUND_DOWN
x.round()                                // '1234'
x                                        // '1234.5'
    .sin() ⇒ Decimal
      Returns a new Decimal whose value is the sine of the value in radians of this Decimal,
      rounded to precision significant digits using rounding
      mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [-1, 1]
    
See Pi for the precision limit of this method.
x = new Decimal(0.5) x.sine() // '0.47942553860420300027' y = new Decimal(0.75) y.sin() // '0.68163876002333416673'
.sqrt() ⇒ Decimal
      Returns a new Decimal whose value is the square root of this Decimal, rounded to
      precision significant digits using rounding mode
      rounding.
    
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
      This method is much faster than using the toPower method with
      an exponent of 0.5.
    
x = new Decimal(16) x.squareRoot() // '4' y = new Decimal(3) y.sqrt() // '1.73205080756887729353' y.sqrt().eq( y.pow(0.5) ) // true
.tan() ⇒ Decimal
      Returns a new Decimal whose value is the tangent of the value in radians of this Decimal,
      rounded to precision significant digits using rounding
      mode rounding.
    
      Domain: [-Infinity, Infinity]
      Range: [-Infinity, Infinity]
    
See Pi for the precision limit of this method.
x = new Decimal(0.5) x.tangent() // '0.54630248984379051326' y = new Decimal(0.75) y.tan() // '0.93159645994407246117'
.times(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal times x,
      rounded to precision significant digits using rounding
      mode rounding.
    
0.6 * 3                                  // 1.7999999999999998
x = new Decimal(0.6)
y = x.times(3)                           // '1.8'
new Decimal('7e+500').times(y)           // '1.26e+501'
    .toBinary([sd [, rm]]) ⇒ string
    
      sd: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal in binary, rounded to sd
      significant digits using rounding mode rm.
    
      If sd is defined, the return value will use binary exponential notation.
    
      If sd is omitted, the return value will be rounded to
      precision significant digits.
    
      If rm is omitted, rounding mode rounding
      will be used.
    
Throws on an invalid sd or rm value.
x = new Decimal(256) x.toBinary() // '0b100000000' x.toBinary(1) // '0b1p+8'
.toDP([dp [, rm]]) ⇒ Decimal
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive.
    
      Returns a new Decimal whose value is the value of this Decimal rounded to dp
      decimal places using rounding mode rm.
    
      If dp is omitted, the return value will have the same value as this Decimal.
    
      If rm is omitted, rounding mode rounding
      is used.
    
Throws on an invalid dp or rm value.
x = new Decimal(12.34567) x.toDecimalPlaces(0) // '12' x.toDecimalPlaces(1, Decimal.ROUND_UP) // '12.4' y = new Decimal(9876.54321) y.toDP(3) // '9876.543' y.toDP(1, 0) // '9876.6' y.toDP(1, Decimal.ROUND_DOWN) // '9876.5'
.toExponential([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal in exponential notation rounded
      using rounding mode rm to dp decimal places, i.e with one digit
      before the decimal point and dp digits after it.
    
      If the value of this Decimal in exponential notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      If dp is omitted, the number of digits after the decimal point defaults to the
      minimum number of digits necessary to represent the value exactly.
    
      If rm is omitted, rounding mode rounding is
      used.
    
Throws on an invalid dp or rm value.
x = 45.6 y = new Decimal(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toExponential(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toExponential(1) // '4.6e+1' y.toExponential(1, Decimal.ROUND_DOWN) // '4.5e+1' x.toExponential(3) // '4.560e+1' y.toExponential(3) // '4.560e+1'
.toFixed([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal in normal (fixed-point) notation
      rounded to dp decimal places using rounding mode rm.
    
      If the value of this Decimal in normal notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      Unlike Number.prototype.toFixed, which returns exponential notation if a number
      is greater or equal to 1021, this method will always return normal
      notation.
    
      If dp is omitted, the return value will be unrounded and in normal notation. This
      is unlike Number.prototype.toFixed, which returns the value to zero decimal
      places, but is useful when because of the current
      toExpNeg or
      toExpNeg values,
      toString returns exponential notation.
    
      If rm is omitted, rounding mode rounding is
      used.
    
Throws on an invalid dp or rm value.
x = 3.456 y = new Decimal(x) x.toFixed() // '3' y.toFixed() // '3.456' y.toFixed(0) // '3' x.toFixed(2) // '3.46' y.toFixed(2) // '3.46' y.toFixed(2, Decimal.ROUND_DOWN) // '3.45' x.toFixed(5) // '3.45600' y.toFixed(5) // '3.45600'
.toFraction([max_denominator]) ⇒ [Decimal, Decimal]
    
      max_denominator: number|string|Decimal: 1 >= integer <
      Infinity
    
      Returns an array of two Decimals representing the value of this Decimal as a simple fraction
      with an integer numerator and an integer denominator. The denominator will be a positive
      non-zero value less than or equal to max_denominator.
    
If a maximum denominator is omitted, the denominator will be the lowest value necessary to represent the number exactly.
Throws on an invalid max_denominator value.
x = new Decimal(1.75)
x.toFraction()                       // '7, 4'
pi = new Decimal('3.14159265358')
pi.toFraction()                      // '157079632679,50000000000'
pi.toFraction(100000)                // '312689, 99532'
pi.toFraction(10000)                 // '355, 113'
pi.toFraction(100)                   // '311, 99'
pi.toFraction(10)                    // '22, 7'
pi.toFraction(1)                     // '3, 1'
    .toHex([sd [, rm]]) ⇒ string
    
      sd: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal in hexadecimal, rounded to
      sd significant digits using rounding mode rm.
    
      If sd is defined, the return value will use binary exponential notation.
    
      If sd is omitted, the return value will be rounded to
      precision significant digits.
    
      If rm is omitted, rounding mode rounding
      will be used.
    
Throws on an invalid sd or rm value.
x = new Decimal(256) x.toHexadecimal() // '0x100' x.toHex(1) // '0x1p+8'
.toJSON() ⇒ stringAs valueOf.
.toNearest(x [, rm]) ⇒ Decimal
    
      x: number|string|Decimal
      rm: number: integer, 0 to 8 inclusive
    
      Returns a new Decimal whose value is the nearest multiple of x in the direction
      of rounding mode rm, or rounding if
      rm is omitted, to the value of this Decimal.
    
      The return value will always have the same sign as this Decimal, unless either this Decimal
      or x is NaN, in which case the return value will be also be
      NaN.
    
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(1.39) x.toNearest(0.25) // '1.5' y = new Decimal(9.499) y.toNearest(0.5, Decimal.ROUND_UP) // '9.5' y.toNearest(0.5, Decimal.ROUND_DOWN) // '9'
.toNumber() ⇒ numberReturns the value of this Decimal converted to a primitive number.
Type coercion with, for example, JavaScript's unary plus operator will also work, except that a Decimal with the value minus zero will convert to positive zero.
x = new Decimal(456.789)
x.toNumber()                   // 456.789
+x                             // 456.789
y = new Decimal('45987349857634085409857349856430985')
y.toNumber()                   // 4.598734985763409e+34
z = new Decimal(-0)
1 / +z                         // Infinity
1 / z.toNumber()               // -Infinity
     .toOctal([sd [, rm]]) ⇒ string
    
      sd: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal in octal, rounded to sd
      significant digits using rounding mode rm.
    
      If sd is defined, the return value will use binary exponential notation.
    
      If sd is omitted, the return value will be rounded to
      precision significant digits.
    
      If rm is omitted, rounding mode rounding
      will be used.
    
Throws on an invalid sd or rm value.
x = new Decimal(256) x.toOctal() // '0o400' x.toOctal(1) // '0o1p+8'
.pow(x) ⇒ Decimalx: number|string|Decimal: integer or non-integer
      Returns a new Decimal whose value is the value of this Decimal raised to the power
      x, rounded to precision significant digits
      using rounding mode rounding.
    
The performance of this method degrades exponentially with increasing digits. For non-integer exponents in particular, the performance of this method may not be adequate.
Math.pow(0.7, 2)               // 0.48999999999999994
x = new Decimal(0.7)
x.toPower(2)                   // '0.49'
new Decimal(3).pow(-2)         // '0.11111111111111111111'
new Decimal(1217652.23).pow('98765.489305603941')
// '4.8227010515242461181e+601039'
    Is the pow function guaranteed to be correctly rounded?
      The return value will almost always be correctly rounded, i.e. rounded as if the result
      was first calculated to an infinite number of correct digits before rounding. If a result is
      incorrectly rounded the maximum error will be 1 ulp (unit in the last
      place).
    
For non-integer and larger exponents this method uses the formula
xy = exp(y*ln(x))
      As the mathematical return values of the exp and
      ln functions are both non-terminating (excluding arguments of
      0 or 1), the values of the Decimals returned by the functions as
      implemented by this library will necessarily be rounded approximations, which means that there
      can be no guarantee of correct rounding when they are combined in the above formula.
    
      The return value may, depending on the rounding mode, be incorrectly rounded only if the first
      15 rounding digits are 15 zeros (and there are non-zero digits
      following at some point), or 15 nines, or a 5 or 4
      followed by 14 nines.
    
      Therefore, assuming the first 15 rounding digits are each equally likely to be
      any digit, 0-9, the probability of an incorrectly rounded result is less than
      1 in 250,000,000,000,000.
    
An example of incorrect rounding:
Decimal.set({ precision: 20, rounding: 1 })
new Decimal(28).pow('6.166675020000903537297764507632802193308677149')
// 839756321.64088511
    As the exact mathematical result begins
839756321.6408851099999999999999999999999999998969466049426031167...
      and the rounding mode is set to ROUND_DOWN, the correct
      return value should be
    
839756321.64088510999
.toPrecision([sd [, rm]]) ⇒ string
    
      sd: number: integer, 1 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal rounded to sd significant
      digits using rounding mode rm.
    
      If sd is less than the number of digits necessary to represent the integer part
      of the value in normal (fixed-point) notation, then exponential notation is used.
    
      If sd is omitted, the return value is the same as
      toString.
    
      If rm is omitted, rounding mode rounding is
      used.
    
Throws on an invalid sd or rm value.
x = 45.6 y = new Decimal(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toPrecision(1) // '5e+1' y.toPrecision(2, Decimal.ROUND_UP) // '46' y.toPrecision(2, Decimal.ROUND_DOWN) // '45' x.toPrecision(5) // '45.600' y.toPrecision(5) // '45.600'
.toSD([sd [, rm]]) ⇒ Decimal
    
      sd: number: integer, 1 to 1e+9 inclusive.
      rm: number: integer, 0 to 8 inclusive.
    
      Returns a new Decimal whose value is the value of this Decimal rounded to sd
      significant digits using rounding mode rm.
    
      If sd is omitted, the return value will be rounded to
      precision significant digits.
    
      If rm is omitted, rounding mode rounding
      will be used.
    
Throws on an invalid sd or rm value.
Decimal.set({ precision: 5, rounding: 4 })
x = new Decimal(9876.54321)
x.toSignificantDigits()                          // '9876.5'
x.toSignificantDigits(6)                         // '9876.54'
x.toSignificantDigits(6, Decimal.ROUND_UP)       // '9876.55'
x.toSD(2)                                        // '9900'
x.toSD(2, 1)                                     // '9800'
x                                                // '9876.54321'
    .toString() ⇒ stringReturns a string representing the value of this Decimal.
      If this Decimal has a positive exponent that is equal to or greater than
      toExpPos, or a negative exponent equal to or less than
      toExpNeg, then exponential notation will be returned.
    
x = new Decimal(750000)
x.toString()                             // '750000'
Decimal.set({ toExpPos: 5 })
x.toString()                             // '7.5e+5'
Decimal.set({ precision: 4 })
y = new Decimal('1.23456789')
y.toString()                             // '1.23456789'
    .trunc() ⇒ DecimalReturns a new Decimal whose value is the value of this Decimal truncated to a whole number.
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(123.456) x.truncated() // '123' y = new Decimal(-12.3) y.trunc() // '-12'
.valueOf() ⇒ stringAs toString, but zero is signed.
x = new Decimal(-0) x.valueOf() // '-0'
      The value of a Decimal is stored in a normalised base 10000000 floating point
      format.
    
A Decimal instance is an object with three properties:
| Property | Description | Type | Value | 
|---|---|---|---|
| d | digits | number [] | Array of integers, each 0-1e7, ornull | 
| e | exponent | number | Integer, -9e15to9e15inclusive, orNaN | 
| s | sign | number | -1,1, orNaN | 
All the properties are best considered to be read-only.
As with JavaScript numbers, the original exponent and fractional trailing zeros of a value are not preserved.
x = new Decimal(0.123)                   // '0.123'
x.toExponential()                        // '1.23e-1'
x.d                                      // [ 1230000 ]
x.e                                      // -1
x.s                                      // 1
y = new Number(-123.4567000e+2)          // '-12345.67'
y.toExponential()                        // '-1.234567e+4'
z = new Decimal('-123.4567000e+2')       // '-12345.67'
z.toExponential()                        // '-1.234567e+4'
z.d                                      // [ 12345, 6700000 ]
z.e                                      // 4
z.s                                      // -1
    
      The table below shows how ±0, NaN and
      ±Infinity are stored.
    
| ±0 | NaN | ±Infinity | |
|---|---|---|---|
| d | [0] | null | null | 
| e | 0 | NaN | NaN | 
| s | ±1 | NaN | ±1 | 
x = new Number(-0) // 0 1 / x == -Infinity // true y = new Decimal(-0) y.d // '0' ( [0].toString() ) y.e // 0 y.s // -1 y.toString() // '0' y.valueOf() // '-0'
      The errors that are thrown are generic Error objects whose message
      property begins with "[DecimalError]".
    
To determine if an exception is a Decimal Error:
try {
    // ...
} catch (e) {
    if ( e instanceof Error && /DecimalError/.test(e.message) ) {
        // ...
    }
}
    
      The maximum precision of the trigonometric methods is dependent on the internal value of the
      constant pi, which is defined as the string PI near the top of the source file.
    
      It has a precision of 1025 digits, meaning that the trigonometric methods
      can calculate up to just over 1000 digits, but the actual figure depends on the
      precision of the argument passed to them. To calculate the actual figure use:
    
maximum_result_precision = 1000 - argument_precision
For example, the following both work fine:
Decimal.set({precision: 991}).tan(123456789)
Decimal.set({precision: 9}).tan(991_digit_number)
    
      as, for each, the result precision plus the argument precision, i.e. 991 + 9 and
      9 + 991, is less than or equal to 1000.
    
      If greater precision is required then the value of PI will need to be extended to
      about 25 digits more than the precision required. The time taken by the methods
      will then be the limiting factor.
    
The value can also be shortened to reduce the size of the source file if such high precision is not required.
To get the value of pi:
pi = Decimal.acos(-1)
Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y)                      // 2.1000
x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y)                 // 4.1400000
    To specify the precision of a value is to specify that the value lies within a certain range.
      In the first example, x has a value of 1.0. The trailing zero shows
      the precision of the value, implying that it is in the range 0.95 to
      1.05. Similarly, the precision indicated by the trailing zeros of y
      indicates that the value is in the range 1.09995 to 1.10005.
    
      If we  add the two lowest values in the ranges we have, 0.95 + 1.09995 = 2.04995,
      and if we add the two highest values we have, 1.05 + 1.10005 = 2.15005, so the
      range of the result of the addition implied by the precision of its operands is
      2.04995 to 2.15005.
    
      The result given by BigDecimal of 2.1000 however, indicates that the value is in
      the range 2.09995 to 2.10005 and therefore the precision implied by
      its trailing zeros may be misleading.
    
      In the second example, the true range is 4.122744 to 4.157256 yet
      the BigDecimal answer of 4.1400000 indicates a range of 4.13999995
      to  4.14000005. Again, the precision implied by the trailing zeros may be
      misleading.
    
      This library, like binary floating point and most calculators, does not retain trailing
      fractional zeros. Instead, the toExponential, toFixed and
      toPrecision methods enable trailing zeros to be added if and when required.